3,093 research outputs found

    Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach

    Get PDF
    This paper deals with design of feedback controllers for knee joint movement of paraplegics using functional electrical stimulation (FES) of the paralyzed quadriceps muscle group. The controller design approach, virtual reference feedback tuning (VRFT), is directly based on open loop measured data and fits the controller in such a way that the closed-loop meets a model reference objective. The use of this strategy, avoiding the modeling step, significantly reduces the time required for controller design and considerably simplifies the rehabilitation protocols. Linear and nonlinear controllers have been designed and experimentally tested, preliminarily on a healthy subject and finally on a paraplegic patient. Linear controller is effective when applied on small range of knee joint angle. The design of a nonlinear controller allows better performances. It is also shown that the control design is effective in tracking assigned knee angle trajectories and rejecting disturbances

    Online identification and nonlinear control of the electrically stimulated quadriceps muscle

    Get PDF
    A new approach for estimating nonlinear models of the electrically stimulated quadriceps muscle group under nonisometric conditions is investigated. The model can be used for designing controlled neuro-prostheses. In order to identify the muscle dynamics (stimulation pulsewidth-active knee moment relation) from discrete-time angle measurements only, a hybrid model structure is postulated for the shank-quadriceps dynamics. The model consists of a relatively well known time-invariant passive component and an uncertain time-variant active component. Rigid body dynamics, described by the Equation of Motion (EoM), and passive joint properties form the time-invariant part. The actuator, i.e. the electrically stimulated muscle group, represents the uncertain time-varying section. A recursive algorithm is outlined for identifying online the stimulated quadriceps muscle group. The algorithm requires EoM and passive joint characteristics to be known a priori. The muscle dynamics represent the product of a continuous-time nonlinear activation dynamics and a nonlinear static contraction function described by a Normalised Radial Basis Function (NRBF) network which has knee-joint angle and angular velocity as input arguments. An Extended Kalman Filter (EKF) approach is chosen to estimate muscle dynamics parameters and to obtain full state estimates of the shank-quadriceps dynamics simultaneously. The latter is important for implementing state feedback controllers. A nonlinear state feedback controller using the backstepping method is explicitly designed whereas the model was identified a priori using the developed identification procedure

    Different Paths of Development of Two Information Systems Communities: A Comparative Study Based on Peer Interviews

    Get PDF
    Information Systems (IS) is not a homogeneous discipline. Rather, it is comprised of various communities that are characterized by different perspectives and methods. With regard to the ongoing discussion about the profile of the discipline, this is a remarkable phenomenon. More specifically, it recommends analyzing the characteristic features of the various IS communities and explaining the diverse paths of development they took. Furthermore, it implies the question whether—and how—the current diversity could be overcome in order to foster a more focused competition as well as a more coherent presentation of research results on an international scale. This article contributes to such an investigation. It is focused on a comparison of the international English-speaking community predominantly (in particular in its early days) shaped by North-American IS researchers, which plays a leading role in the international scene, and the IS discipline in German-speaking countries (”Wirtschaftsinformatik” or WI, in Austria, Germany, and Switzerland), which constitutes the largest IS community outside North America that maintains its own approach. The focus of this article is mainly on describing the communities’ characteristics as the outcome of a social construction that is chiefly influenced by those individuals who participated in this construction. Against this background, eight scholars from North America and six scholars from German-speaking countries were interviewed at length. All were chosen as witnesses of and important contributors to the development of their discipline. As a result of this reconstruction, the article presents a rich picture of the communities’ history and characteristics as experienced and reported by the interviewees. The results obtained from this project indicate that neither of the two conceptions (IS or WI) can serve as an ideal model. Instead, a more intensive international exchange among the various research communities, including the Scandinavian and British scholars, should contribute to further develop the field into a more mature and satisfactory state

    Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and mobile cycling

    Get PDF
    AIM: The aim of this study was to investigate feedback control strategies for integration of electric motor assist and functional electrical stimulation (FES) for paraplegic cycling, with particular focus on development of a testbed for exercise testing in FES cycling, in which both cycling cadence and workrate are simultaneously well controlled and contemporary physiological measures of exercise performance derived. A second aim was to investigate the possible benefits of the approach for mobile, recreational cycling. METHODS: A recumbent tricycle with an auxiliary electric motor is used, which is adapted for paraplegic users, and instrumented for stimulation control. We propose a novel integrated control strategy which simultaneously provides feedback control of leg power output (via automatic adjustment of stimulation intensity) and cycling cadence (via electric motor control). Both loops are designed using system identification and analytical (model-based) feedback design methods. Ventilatory and pulmonary gas exchange response profiles are derived using a portable system for real-time breath-by-breath acquisition. RESULTS:We provide indicative results from one paraplegic subject in which a series of feedback-control tests illustrate accurate control of cycling cadence, leg power control, and external disturbance rejection. We also provide physiological response profiles from a submaximal exercise step test and a maximal incremental exercise test, as facilitated by the control strategy. CONCLUSION: The integrated control strategy is effective in facilitating exercise testing under conditions of well-controlled cadence and power output. Our control approach significantly extends the achievable workrate range and enhances exercise-test sensitivity for FES cycling, thus allowing a more stringent characterization of physiological response profiles and estimation of key parameters of aerobic function.We further conclude that the control approach can significantly improve the overall performance of mobile recreational cycling
    • 

    corecore